bei weiterem Erhitzen unter Aufschäumen. Die Ausbeute war mäßig. Die Säure wurde in Wasser gelöst und mit Calciumacetat-Lösung versetzt; das Calciumsalz der Säure fiel hierbei in kleinen, harten Nadeln aus, die in Wasser fast unlöslich waren.

Das Calciumsalz der Pyridin-2.3.6-tricarbonsäure krystallisiert mit 4 Mol. Krystallwasser, das der Berberonsäure, der 3.4.6-Tricarbonsäure, mit 8 Mol. Die Analyse ergab, daß das erstere vorlag.

0.1432 g Sbst. verloren bei 1000 0.0164 g H2O.

Ca₃(C₈H₂O₆N)₂ + 4 H₂O. Ber. H₂O 11.85. Gef. H₂O 11.45.

Die so getrocknete Substanz wurde verascht.

0.1268 g Sbst.: 0.0396 g CaO. -- Ca₃(C₈H₂O₆N)₂. Ber. Ca 22.43. Gef. Ca 22.32.

Zum Vergleich haben wir auch das berberonsaure Calcium analysiert.

0.2365 g Sbst. verloren bei 1000 0.0497 g H2O.

 $Ca_3(C_8H_2O_8N)_2 + 8 H_2O$. Ber. H_2O 21.19. Gef. H_2O 21.02.

Die so getrocknete Substanz wurde veräscht.

0.1868 g Sbst.: 0.0573 g CaO. — Ca₃(C₈H₂O₆N)₂. Ber. Ca 22.43. Gef. Ca 21.92.

86. Ernst Späth: Zur Synthese des ψ -Ephedrins.

[Aus d. II. Chem. Laborat. d. Universität Wien.] (Eingegangen am 4. Dezember 1924.)

Gemeinschaftlich mit dem durch einen alpinen Unfall inzwischen verstorbenen Dr. Rudolf Göhring¹) hatte ich 1920 eine Synthese der beiden natürlichen Ephedrine (Ephedrin und ψ -Ephedrin) durchgeführt und hierdurch einen klaren Beweis für die durch die gründlichen Arbeiten von Ernst Schmidt²) wahrscheinlich gemachte Konstitution dieser stereoisomeren Alkaloide C, H, CH(OH). CH(NH. CH3). CH3 erbracht. Die vorher und gleichzeitig mitgeteilten synthetischen Versuche von E. Fourneau2) und Eberhard²) können nicht als Synthesen der natürlichen Ephedrine angesehen werden, weil die Konstitution der namentlich von Fourneau erhaltenen Verbindungen nicht in allen Fällen eindeutig ermittelt und außerdem ein Vergleich mit den natürlichen Ephedrinen nicht vorgenommen werden konnte. Denn es gelang diesen Autoren weder die Spaltung ihrer synthetischen Racemyerbindungen in die optisch aktiven Komponenten, die mit den natürlichen Basen identisch sein konnten, noch wurden die Alkaloide racemisiert und in dieser Form mit den synthetischen Verbindungen verglichen. Der von E. Fourneau synthetisierte Körper von der Schmidtschen Formel der Ephedrine war mit keinem der von Göhring und mir erhaltenen racemischen Ephedrine identisch. Das von Eberhard dargestellte rac. y-Ephedrin war unserem racemischen ψ -Ephedrin wohl sehr ähnlich, doch im Schmelzpunkt des Chlorhydrates und durch die Bildung eines abnormen Goldsalzes so weit verschieden, daß wir eine Identität dieser Verbindungen nicht an nehmen konnten.

In einigen neueren Arbeiten, die mit Puyal³) und S. Kanao⁴) durchgeführt werden, kommt Fourneau auf seine früheren synthetischen Ver-

¹⁾ M. 41, 319 [1920].

²⁾ Literaturzusammenstellung in M. 41, 319 [1920] und E. Forneau und S. Kanao, Bl. [4] 35, 622 [1924].

³⁾ Ann. esp. fis. et Quim. 1922, 394. 4) Bl. [4] 35, 614 [1924].

suche zurück, indem er auf Grund der Ergebnisse anderer Autoren unter seinen sogenannten synthetischen Ephedrinen dasjenige heraussucht, welches mit unseren synthetischen, gespaltenen und mit den Naturkörpern als identisch erkannten Ephedrinen in Form der Racemkörper gleich sein konnte. Obzwar ich seinerzeit seinem Mitarbeiter Puyal kleine Mengen der von uns erhaltenen Verbindungen zur Verfügung gestellt hatte, nimmt Fourneau bei dieser Gelegenheit Anlaß, an einigen der von uns erhaltenen Ergebnisse, die in Gegensatz zu seinen eigenen und zu denen von Eberhard stehen, zu zweifeln. Zusammen mit Göhring hatte ich seinerzeit angegeben, daß das Chlorhydrat des rac. ψ -Ephedrins bei 164° schmilzt, während das d- ψ -Ephedrin-Chlorhydrat bei 1820 flüssig wird. Diese Schmelzpunktdifferenz war nicht auffällig, wenn man bedenkt, daß die Salze optisch aktiver Basen in den meisten Fällen andere Schmelzpunkte besitzen als die Salze der entsprechenden Racemverbindungen. Obzwar wir unser rac. w-Ephedrin in das natürliche, optisch aktive überführen konnten, hält Fourneau ohne Wiederholung unserer Versuche den von uns ermittelten Schmelzpunkt des Chlorhydrates für falsch. Ich konnte leicht feststellen, daß diese Annahme von E. Fourneau durchaus unrichtig ist. Bei der Spaltung des synthetischen rac. y-Ephedrins erhielten wir außer dem natürlichen d-y-Ephedrin auch das in der Natur nicht vorkommende l-\psi-Ephedrin, das sowohl als Base als auch in Form seiner Derivate in den Schmelzpunkten dem optischen Antipoden völlig glich. Die Chlorhydrate von l- und d-w-Ephedrin schmelzen entsprechend unseren früheren Angaben und den Ergebnissen einer Neudarstellung bei 182-1830. Wenn man aber gleiche Teile der reinen, bei 182-1830 schmelzenden Chlorhydrate von l- und d-ψ-Ephedrin aus wenig Wasser krystallisieren läßt, so erhält man ein bei 1640 schmelzendes Chlorhydrat, völlig entsprechend dem von uns ermittelten Schmelzpunkt des rac. w-Ephedrin-Chlorhydrates, das natürlich in dem bereiteten Gemenge der l- und d-Form entstanden sein muß. Schließlich stellte ich diese Verbindung in Wiederholung unserer früheren Versuche aus reinstem rac. 14-Ephedrin dar und konnte den gleichen Schmelzpunkt (1640). beobachten. Aber auch der zweite Vorwurf von Fourneau ist nicht stichhaltig. Wir hatten seinerzeit angegeben, daß das rac. w-Ephedrin ein abnormal gebautes Goldsalz von der Formel (C₂₀H₃₀O₂N₂), HCl, HAuCl₄ vom Schmp. 186-187° liefert, während das d- ψ -Ephedrin ein reguläres Salz von der Formel ($C_{10}H_{15}ON$), $HAuCl_4$ und dem Schmp. 126° gibt. Man konnte annehmen, daß das rac. y-Ephedrin die Rolle einer Base mit zwei Stickstoffatomen_spielt, welches nur an einem Stickstoff das Goldchlorid anlagert. Fourneau bezweifelt dieses Ergebnis und meint, daß "irgendwelche abnormale Sache passiert sein könnte". Ich habe daher auch diese Angelegenheit neuerlich geprüft. Aus reinem rac. ψ-Ephedrin erhielt ich leicht das bei 1860 schmelzende Goldsalz, welches die gleiche abnorme Zusammensetzung besaß. Obzwar ich das normale Salz nicht erhalten habe, wäre es möglich, daß es dennoch existenzfähig ist. Immerhin scheint mir aber sicher, daß jeder, der unzweifelhaftes rac. w-Ephedrin in den Händen gehabt, auf das ahnorm zusammengesetzte Salz gestoßen wäre.

Die Angaben von E. Fourneau, die dieser Autor ohne Prüfung unserer früheren Ergebnisse mitgeteilt hat, erweisen sich also als haltlos. Unter der Voraussetzung, daß die von Eberhard und Fourneau ermittelten Schmelzpunkte der von ihnen erhaltenen Verbindungen richtig sind, kann man mit

Sicherheit annehmen, daß dieselben nicht rac. ψ -Ephedrin dargestellt hatten.

Beschresbung der Versuche.

Das in Verwendung genommene, im evakuierten Röhrchen aufbewahrte $rac.\ \psi$ -Ephedrin war vollkommen rein und schmolz scharf bei 118—119°. Das Chlorhydrat dieser Base wurde so wie früher durch Lösen in Essigsäure-äthylester und Einleiten von HCl-Gas erhalten. Der Schmelzpunkt lag scharf bei 164° und auch die Cl-Bestimmung war entsprechend unseren früheren Angaben.

0.1028 g Sbst.: 0.0731 g AgCl. — C₁₀H₁₆ON, HCl. Ber. Cl 17.59. Gef. Cl 17.59.

Auch durch Eindampfen einer Lösung von $rac. \psi$ -Ephedrin in der genau entsprechenden Menge Salzsäure im Vakuum über $\rm H_2SO_4$ wurde das gleiche bei $\rm 164^0$ schmelzende Chlorhydrat erhalten.

Die Chlorhydrate von d- und l- ψ -Ephedrin wurden durch Fällen ihrer Essigsäureäthylester-Lösungen durch Chlorwasserstoff in Form von weißen, bei 182–183° schmelzenden Krystallen erhalten. Je 0.0104 g dieser beiden Salze wurden in wenig Wasser gelöst, im Vakuum über H_2SO_4 eingedampft und der Rückstand einige Minuten auf 60° im Vakuum erwärmt. Der Schmelzpunkt dieser Verbindung lag bei 164°. Nach dem Vermischen mit rac. ψ -Ephedrin-Chlorhydrat trat keine Änderung des Schmelzpunktes ein.

Ein durch 4 Jahre aufbewahrtes Au-Salz des rac. w-Ephedrins schmolz entsprechend unseren früheren Angaben bei 186—187° unter schwacher Bläschenbildung und zeigte auch dieselben Analysenresultate.

0.1499 g Sbst.: 0.0419 g Au. — 0.1653 g Sbst.: 0.1676 g AgCl.

C₂₀H₃₀O₂N₂, HCl, HAuCl₄. Ber. Au 27.90, Cl 25.09. Gef. Au 27.95, Cl 25.08.

Doch um sicher zu gehen, wurde aus reinem rac. ψ -Ephedrin das Goldsalz neuerlich, und zwar unter den folgenden Bedingungen dargestellt:

0.142 g des rac. ψ -Ephedrins wurden in 2 ccm HCl (1 ccm = 0.025 g HCl) gelöst und 2 ccm AuCl₃ (1 ccm = 0.1245 g Au) mit einem Gusse hinzugefügt. Aus der anfänglich gebildeten Trübung schieden sich bald hellgelbe Krystalle aus. Nach einigen Minuten wurde abgesaugt, mit wenig Wasser gewaschen und dann im Vakuum über Schwefelsäure getrocknet. Obwohl zur Darstellung dieses Salzes ein Überschuß von Goldchlorid zur Verwendung gelangte, wurde genau so wie früher das abnormale Goldsalz erhalten. Der Schmelzpunkt lag bei 186—187° unter schwacher Gasentwicklung. Der Misch-Schmelzpunkt mit dem oben genannten älteren Goldsalz gab keine Änderung des Schmelzpunktes. Zur Analyse wurde die Substanz kurze Zeit im Vakuum bei 60° getrocknet.

0.0984 g Sbst.: 0.0275 g Au. — 0.0721 g Sbst.: 0.0730 g AgCl. C₂₀H₂₀O₂N₂, HCl, HAuCl₄. Ber. Au 27.90, Cl 25.09. Gef. Au 27.95, Cl 25.05.

Um festzustellen, ob unter den Bedingungen der Bildung des Goldsalzes irgendeine Veränderung der Base eintrete, wurde eine kleine Menge des Au-Salzes mit Hydroxylamin-Chlorhydrat in wäßriger Lösung einen Tag sich selbst überlassen. Nun wurde vom ausgeschiedenen Gold filtriert, mit Kaliumcarbonat alkalisch gemacht und mit reinem Äther ausgeschüttelt. Beim Einengen der ätherischen Lösung krystallisierte die Base in verfülzten Nadeln, die bei 118—119° schmolzen und nach dem Vermischen mit rac. w-Ephedrin keine Änderung des Schmelzpunktes gaben.